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Corrections to scaling in the forest-fire model
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We present a systematic study of corrections to scaling in the self-organized critical forest-fire model. The
analysis of the steady-state condition for the density of trees allows us to pinpoint the presence of these
corrections, which take the form of subdominant exponents modifying the standard finite-size scaling form.
Applying an extended version of the moment analysis technique, we find the scaling region of the model and
compute nontrivial corrections to scaling.
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. INTRODUCTION state[9]. Finally, 7(z) andG(z) are cut-off functions that are
_ o constant forz—0 and decay exponentially fast far—co.
The term self-organized criticalitySOQ [1] refers to a The precise determination of critical exponents is a rel-

set of driven dissipative systems that, under the action of @vant issue in order to firmly establish universality classes
very small external driving, evolve into a critical state char-and the upper critical dimension, that on their turn are fun-
acterized by avalanches broadly distributed in space andamental in the theoretical understanding of the critical na-
time, which lead to divergenfpower-law response func- ture of the model. While the numerical determination of the
tions. Since its introduction by Bak, Tang, and Wiesenfeldoverall power law behavior is a relatively easy task, a very
[2], the concept of SOC has been the object of a very intensgccurate determination of critical exponents from numerical
research activity, covering both theory and numerical simusimulations can suffer from strong systematic biases due to
lations. the distribution’s lower and upper cut offs. More subtly, the
Among the many models proposed so far exhibiting SOGassumption of the FSS form does not take into account the
behavior, the forest-fire modéFFM) [3—6] is one of the presence of corrections to scaling due to subdominant expo-
most simply defined and well understood. The FFM is anents. These corrections are more evident for small values of
three states cellular automaton defined od-@imensional  the various magnitudes and for deviations from pure critical-
hypercubic lattice. Each site of the lattice is occupied eitheity (9~ 1#0). On the other hand, for a sufficiently large
by a tree, by a burning tree, or is empty. Every time step, th&alue of 9, one can safely assume that the scalibg-(2) is
cellular automaton evolves according to the following set ofessentially correct. Let us then define #maling regimeof
rules:(i) each burning tree becomes an empty dit¢;every  the model by the parameté.,;, defined such that the single
tree with at least one burning nearest neighbor becomes gtaling picture is correct fof> 6, in principle, 0., is a
burning tree;(iii) a tree becomes a burning tree with prob- magnitude which depends on the microscopic details of the
ability f, irrespective of its nearest neighbo(®;) an empty  model. However, the value oy is in general unknown,
site becomes a tree with probabilily The FFM possesses and when analyzing numerical data, there isanriori way
two characteristic time scalg4]: the average time for a tree o ascertain whether the range @fat our disposal is large
to grow 1p and the average time between fire$.1h the  enough.
limit of the double infinite time scale separatiors>p>f, In this paper, we will show that in the stationary state of
the model displays critical behavip4,6]: i.e., fires are dis- the forest fire model, the presence of scaling corrections
tributed according to power laws. The magnitudes charactefarises naturally. The analytical inspection of the steady-state
izing a fire are the total number of trees buspand the total  condition points out the presence of subdominant scaling
time duration of the fird (measured as the total number of corrections and calls for an extended scaling framework al-
parallel updatings of the algoritimin the critical state, with  Jowing the evaluation of the scaling regime and the various
p/f>1, the probability distributions of sizes and times havecorrections to scaling present in the model. The proper treat-
been observed to follow the standard finite-size scalingnent of scaling corrections permits a more precise estimate

(FSS hypothesiq 7]: of the leading exponents. In order to analyze the occurrence
of correction to scaling in a systematic way, we generalize
s the powerful moment analysis introduced in R¢fd] and
P(s,0)=s Tsf( E) (1) [11] to a more general scaling form. Within this new frame-

work, we are able to estimate the valdg.,, above which
the simple form(1) is meaningful. We thus obtain corrected
t exponents, and the values of the first subdominant expo-

P(t,0) =t_”g( —)\) , (2)  nents.

™ The paper is organized as follows: In Sec. II, by analyzing
the steady-state condition, we show the ineluctable emer-
where #=p/f is the critical parameter of the modd], and  gence of subdominant corrections to scaling in the FFM. In
7 and \, are scaling exponents characterizing the criticalSec. Ill, we review the moment analysis technique, and out-
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line its extension to probability distributions with subdomi- function that decays faster thaf(z) whenz—«. In this
nant terms. Section IV provides numerical evidence of ouiyay, and for fixeds, the effects of the corrections are ex-
results by means of extensive simulations of the FFMIin pected to be more noticeable for small valuescoThe el-

=2. Finally, our conclusions are summarized in Sec. V. lipsis denotes other possible corrections, which are of lower
order compared to the first one.
Il. STATIONARITY CONDITION AND SCALING In this perspective, a very accurate measurement of criti-
CORRECTIONS cal exponents cannot escape the precise knowledge of the

. , , . extent of the intermediate region in which scaling corrections
_The necessity to include corrections to scaling indeed, ¢ gijl| noticeable. In particular, a method of analysis which
arises naturally in the FFM, by just considering the steadyiayes into account the presence of subdominant exponents is

state condition of the moddh,6]. For any value off, at  roqyired for a fully consistent analysis of the scaling proper-
large times the FFM sets in a steady state characterized by a5 4t finite values ob.

average constant density of treggs, and empty sites, 1
—p; (the density difference after and before a fire is negli-
gible, being of ordew/L?). The density of trees is known to IIl. MOMENT ANALYSIS

display the asymptotic behavior at large6,8] The determination of the scaling exponents for the FFM
o W has been performed most often in previous works by a direct
pr=py —ab . ) measurement of the slope of a log-log pld6,8,13,14
This procedure yields the exponettby means of a straight-
forward linear regression. The exponantis then computed
by imposing the constrairiil) for different values of), using
the previously computed value af [6].
Even though with this procedurésometimes supple-
ented with extrapolations and/or local slope ana)ysize
can determine the exponents within a 10% accuracy, its per-
1-p, formance is affected by the existence of the upper and lower
(s)y=16 ) (4) cutoffs, which render difficult its application. Moreover, any
Pt binning performed to smooth the numerical distributions can
lead to biases very difficult to assess. In this respect, it is
better to use analysis techniques that use the whole set of

Computer simulations ind=2 provide the valuesp;
=0.408 andx=0.5[8]. In the steady-state, and for a fixéd
value, the average number of growing tree$l—p,)L¢,
must equal the average number of burnt trefigs(s),LY,
where(s), is the average size of a fire. Therefore, the mean
number of trees burnt by a fire is given by

In the limit 6—«, the mean tree density reaches its critical

value p; , and we recover the usual relatige) ~ 0.: P/t data(not only the power law regimeand contain explicitly
[4]. However, for any finite value o, the system is sub- o sy stem-size dependency. In the SOC field, the moment
critical andp,<p; . Substituting the expressidB) into (4), analysis has been introduced by De Menethal. in the

we obtain context of the two dimensional Bak-Tang-Wiesenfeld model
. Y . [10,11] and has been successfully applied to both determin-
(8),= 6% 1=pr+ad ™ 1-p a . istic and stochastic modef45—18. In the following we in-
0 pr—ab @ o7 (p7)? troduce the moment analysis and extend the method in order
to deal with scaling forms that make explicit the presence of
+0(6r %), (5)  subdominant corrections.

That is, neglecting corrections of ordét™2* (which is valid . .
sincea~0.5), the form of the average fire size for finitds A. Single scaling form
In this section, we concentrate in the moment analysis of
(s)g=C10+Cp0" ", (6)  the fire size, following Refs[10] and[11]. We start with a
) ) distribution fulfilling the scaling form(1). The gth moment
where theCy are constants independent &f Inspection of ¢ ihe distribution is defined bysT) ,= [ sIP(s, 6)ds. In-

Eq. () proves that it is impossible to obtain suclWa@epen-  sqrting the scaling form d? into this expression yields the
dence for the average avalanche size with an FSS of the for'&i‘ependence

(1). We are therefore forced to admit a more complex scaling

form. These corrections to scaling, which on the other hand ]

are well known in the field of equilibrium and nonequilib- (8% = psla71770 Lﬂ 9" s FH(z)dz, (8
rium critical phenomen@l2], take the form of subdominant ’

corrections to Fhe .Ieadmgnﬁmte 0) scaling form of the where we have used the transformatioas/ 8*s. For large
probability distributions. The most general form of these cor-

X

rections is values off, and provided thatj> r,— 1, the lower limit of
the integral in Eq(8) can be replaced by 0. We then have
y (s%) g~ 6M(9%1779 |n general, we can writés%) ,~ s,
P(X, 0):X—Tx]:( - _|+.... (7 Wwhere the exponentss(q) can be obtained as the slope of a
O Mx log-log plot of (s9), as a function 0. Comparing with(8),
one has(s9%1),/(s%) ,~ s or o5(q+1)—0os(q)=\g, SO
In the last equations and\} are subdominant exponents, that the slope ofrs(q) as a function ofj is the cutoff expo-
correcting the infinited behavior, and7*(z) is a cut-off nent; i.e.,As=dos(q)/dqg. This is not true for smalt, be-

+x‘T:f*(
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cause the integral in E@8) is dominated by its lower cutoff. -1.3 — 1
In particular, the lower cutoff becomes important fipe 7
—1. Once the exponertg is known, we can estimate; LS
from the scaling relationship R7)Ns=04(1). & 17
The results of the moment analysis must finally be |
checked by means of a data collapse analysis. The initially 8. —L9
assumed FSS hypothegis has to be verified, and must be %
consistent with the calculated exponents. This can be done &0 21
by rescalings—s/ s and P(s,)— P(s, 6) #"s™s. Data for a3
different values of¢ must then collapse onto the same uni-
versal curve if the FSS hypothesis is to be satisfied. Com- -2.5 : : :
. ) 2 2.5 3 35 4
plete consistency between the methods gives the best col- logyo 6

lapse with the exponents obtained by the moment analysis.
FIG. 1. Scaling of the average density of trees as a function of

B. Moment analysis with corrections to scaling the parametet=p/f.

Let us now develop the formalism of the moment analysi
for a distribution with corrections to scaling of the fol(T),
where we will only keep the first nontrivial correction. By
plugging this form into the definition of thgth moment, we
obtain

Shoth the leading and subdominant terms in the size probabil-

ity distribution is related to the presence of a unique and
well-defined divergent characteristic size in the avalanche
evolution. Under this assumption, EG.0) becomes

- s =, s (s9)y= 01 D[C(q) 2779+ C* () 27721,
(=] s "9F —|ds+ | s I —|ds (12
A
1 Os 1 s
Specializing this relation tg=1 we obtain
= gks(qul*Ts)j 2775+q]:(z)dz .
67" (8)p=[C(1) 2779+ C* (1) P>~ 7)]. (13
+ 0”§(q+1”§)f oz s T4+ (z)dz 9 Comparing now with the expression for the average fire size
0" (first momen}, Eq. (6), we can identifya(2—7)=1 and

In the integrals of the previous expression we have explicity*s(2— 7¢) =1~ a, from which we obtain the exponents
written the dependence on the lower cut off. Fbrsuffi- .
ciently large andy>max(rs,7*)—1, the lower limits tend to 7s=2—1s, 73=2—(1—a)l\s. (14
zero, and thus we expect the integrals to be independeht of ) )
However, we cannot discard in general a possible deperl/sing the previous relations, we can express @@) as a
dence ory (through the exponent in the integranwe have ~ function of the exponents and A alone:
therefore

(9= "D C(q)+C* (@)™ ). (15

(s%4=C(q) g0 +.Cx () TR), (10) _
Equation(15) suggests the correct strategy to work out the

where we have defined the constatitelependent of) moment analysis. Firstly, we observe that the quantity

® s
Cla)- [ 7 maas qu)Eﬁ:cchw)ea (16)

[

c*(q)zfO z77s U (2)dz.

Analysis of the general Eq10) is extremely difficult, due
to the impossibility to separate the two leading behaviors

<)
<
"9 and s 9. In order to achieve further progress, we must /\3
somehow simplify relation10). To do so, we proceed to &
make an ansatz, whose validity will have to be numerically =
verified a posteriori The ansatz consists in assuming the ioo
identity

-1.6 1 1 !
2 25

. 3
A=\, (11) log0 ¢

that is, the cut-off exponents do not suffer from corrections. FIG. 2. Scaling of the average fire size as a function of the
The physical interpretation of this single cut-off exponent forparametery= p/f.
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depends only ord™“. We can use this fact to verify the
validity of the ansata § =\ by plottingI"(6) as a function

of 9~ ¢ for different values ofy, and checking whether or not
the plots have linear dependence. Secondly, we note that the
second term between brackets in the r.h.s. of @§) de-
creases with increasing. For 6 sufficiently large, this sec-
ond term is negligible with respect to the constant
C(q),(s%, has a pure power-law dependence and we can
proceed to computé by means of linear regressions. In-
deed, this observation allows us to define quantitatively the
scaling region of the model: assuming that the ratio

C(q)/C*(q) does not depend strongly @p we definefg.,
as the value of the scaling parameter for which

Cc*(1)

C(1)

—a
scalgr,

17
with r some(arbitrary) small number. Fow> 6., the ap-
proximation (s%,=@"s{9"V+1C(q), and therefore the
single scaling forn(1) is correct, within a precision of order
r. One can thus proceed to compute the quantitfq) by
means of regressions limited to valuesfof f.,, determine
\ by differentiation and, using Eq14), estimate the rest of
the exponents.

IV. NUMERICAL RESULTS

FIG. 3. Plot ofo4(q), computed from linear regressions from
0=4096 to 32 768. The slope yields the exponegt 1.09+0.01.

Marquardt non-linear fitting algorithni19]. We obtain a
critical asymptotic density of treqg = 0.4084+0.0005, and
an exponentr=0.47+0.01, in good agreement with previ-
ous resultg6]. In Fig. 1 we have checked the asymptotic
form of the average tree density by plotting {g@; — py) as

a function of logg6.

In Fig. 2, we check the validity of Ed6). The parameters
computed, using again a non-linear curve fitting, &g
=0.854C,=1.973, anda=0.47+0.01. Again, we observe
a very good fit to the predicted form. In view of this results,

In order to check numerically our arguments, we havewe select the value=0.47 for the computations to follow.

performed extensive numerical simulations of the FFM in
d=2, using the algorithm described in RdB]. Starting
from an arbitrary initial configuration, we update the lattice
according to the following rulegi) select at random a site in
the lattice; if the site contains a tree, burn it and all the tree
that belong to its same forest cluster; if the site is empty
proceed to step ii(ii) select at randon® sites; if a site is
empty, grow a tree on it; if it contains a tree, do nothing. It is
easy to see that these set of rules are equivalent to the ori
nal definition of the FFM, in the limip=0" and finitep/f
=46. For large §, we thus ensure the double infinite time

scale separation condition. The system sizes considered af

up to L=19000 and the values of range from 128 to
32768. Results are averaged ovef h@nzero fires.

A. Average density of trees

B. Size probability distribution
Once we have verified the likelihood of corrections to

gcaling in the first moment of the fire size distribution, we

proceed to analyze the size probability distribution. The first
Step is to compute the threshadg,, using the criterion(17).
We arbitrarily fix the parametar=0.05; for this value, to-

gF_ether with the estimates @;=C(1) andC,=C*(1) ob-

ained by analyzings),, we estimatefs.,=3000. For val-

ues of @ larger than 3000 therefore, the single FSS f@im

n be assumed to be valid, and we can proceed along the
standard moment analysis technique. In Fig. 3, we plot the
moments o4(q) computed from linear regressions of
log,(s%) 4 as a function of logyd, for values of# between
4096 and 32768. The slope of this plot yields the exponent
Ns=1.09+0.01; finally using the relationg14) with «

In the first place, we study the average density of trees as0.47, we obtainrs=1.08+0.01 and 7} =1.51+0.02. A

a function of the parametet. After discarding a sufficiently
large number of firegusually 5<10°) to ensure that the

summary of results is presented in Table I.
Once we have computed the exponkgf we can checla

system is in a steady-state, we compute the average numbgssteriori the validity of the ansata? =\;. We do so by
of trees, per unit area, lefffter each fire. The measuregdis  plotting the quantitylo(8)/T q( Oin) ~(sN /9 V™ as a
fitted to the functional fornp;” —a6~“ using the Levenberg- function of 6~ ¢, with «=0.47, for several values af, Fig.

TABLE |. Critical exponents for the FFM model, obtained through the slope analysis[&egand by
means of the moment analysis. Figures in parenthesis denote statistical uncertainties.

Ts A= )\: T; Tt A
Slope
Analysis 1.143) 1.153) 1.277) 0.58
Moment
Analysis 1.081) 1.091) 1.51(2) 1.271) 0.591)
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FIG. 6. Plot ofo(q), computed from linear regressions from

FIG. 4. R ledy-th tI’ r i functi f .
escaledith momentl’q(6)/1'q( i) &S function o 0#=4096 to 32 768. The slope yields the exponept 0.59+0.01.

67947 The good linear fit for small validates the ansatx®

=\s. The full lines are guides to the eye.
C. Time probability distribution

4. For large values of~“, we observe a very good linear  To complete the study of the FFM, we proceed in this
relationship. The goodness of the fit decreases for laayed ~ section to apply the moment analysis to the fire time distri-
large @ (small 6~ %) because in both cases, ttjh momentis  bution. Here there is n@ priori clue about the possible
dominated by the largest avalanches, of which there is pooregxistence of corrections to scaling. We will therefore assume
statistics. We conclude therefore that the assumphign the simple FSS forn(2) and perform the analysis for values
=\, is indeed well justified for the FFM. of ¢ larger thanfs,.

The presence of corrections of the fofif) make impos- Along the same lines followed for the size distribution,
sible to use a standard data collapse to inspect the accuragie define thejth time momentt%) ,= [Tt9P(t, #)dt. In this
of our results in the whole range @fvalues. However, for case, we havetd),~67(P, with \;=do(q)/9q and 7,
0> 0.4, iS reasonable to expect a good collapse to the singlgiven by the relation (2 7)\{=o0(1). In Fig. 6, we plot
form (1). We have plotted this data collapse in Fig. 5, for theo(q) as a function of, computed by linear regression for
integrated size distributions. The collapse for the exponenticthe largest values of. From the slope of this plot we obtain
tail of the distribution is quite remarkable. On the other hand)\;=0.59+0.01, and using this value on the precedent scal-
it is poorer for small values of. This effect is due to the ing relation, we obtainr,=1.27£0.01. The data collapse
very presence of corrections to scaling, whose influence iwith these exponents of the integrated time distribution is
stronger for smalk. shown in Fig. 7. In this case, and on the contrary to the size

Our method provides values that correct previous estidistribution, the collapse is perfect for all valuestpivhich
mates (namely, in our notation,7¢=1.14+0.03 and\;  proves the irrelevance of corrections to scaling in the distri-
=1.15-0.03, Ref.[6]) by a 5%. As explained before, the bution of this magnitude.
discrepancy is due to the fact that in Riéf] exponents were It is interesting to note that our results match quite closely
computed by directly measuring the slope of the probabilitythe results in Refl6], namely\,=0.58 andr,=1.27+0.07.
distributions, a method which is usually less accurate. Oufrhis fact is accounted for by the method employed in Ref.
value of\, on the other hand, agrees better with the resul{6] to compute\, that is, an analysis of the lifetime of the
reported in Ref[8], which was obtained by a method closer largest fire,T ., @s a function ofd. This procedure indeed

in spirit to the moment analysis. amounts to an estimation of the cut-off exponent of the time
2 T T T 2 T T T T
— 0 T 1 . o0t 1
2 o
R 1
= 2 1 % -2 r 1
I 1 F i I
£ £
’é; -4 3t E 1 ’éb -4 r 4
= =
— _5 [ B bo
g -6t \ 1 2 6t .
_7 L L
-0.5 0.5 1.5
—8 | 1 1 —8 1 Il | 1
-6 - 2 -3 - 1 2

4 ) -1
logyg 5/6™ logyg t/egt
FIG. 5. Data collapse analysis of the integrated fire size distri- FIG. 7. Data collapse analysis of the integrated fire time distri-

bution. §=4096, 8192, 16 384, and 32 768. Exponents used: bution. #=4096, 8192, 16 384, and 32 768. Exponents used:

=1.09, 7,=1.08. Inset: detail of the tail of the distribution. =0.59, r,=1.27.
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distribution, and is presumably less error-prone that a direct As a final remark, it is interesting to point out that the

measurement of the initial slope of the distribution. present method can also be applied to standard sandpile
models, defined on a lattice of sitewith open boundary
V. CONCLUSIONS conditions. In this case, however, the applicability of the

o _method is hindered by the availability of a smaller range of
In summary, in this paper we have shown that subdomiya|yes of the scaling parameter Interestingly, preliminar
nant scaling corrections are inescapable in the forest-firgasyits with medium system sizes indicate that the ansatz
model. The analytical analysis of the stationarity condmon}\sz)\: may be violated in sandpiles. This fact can be related
shows that scaling corrections to a simple FSS form of thgy, the” more complex structure of avalanches in sandpiles
fires distribution must be included in order to account for the(compared with the percolationlike fires in the FEMhat
model behavior at finite values @f In this perspective, we g ce the presence of more than one characteristic ava-
have proposed a method to explore corrections to the finiteynche size. Unfortunately, the violation of the ansatz renders
size scaling hypothesis in the forest-fire model. The methody,q computation of the corrections considerably much

based in an extension of the moment analysis, allows in pringarder. Work is underways to explore the full structure of the
ciple the determination of the scaling regime of the models . ractions to scaling in sadpiles.

as well as the computation of the first order corrections to

scaling. Applying our method, we have been able to compute

numenca_lly corrected vaIue; to the scglmg exponents, sum- ACKNOWLEDGMENTS

marized in Table I, and estimate nontrivial corrections. We

note that our approach is complementary with previous stud- We thank A. Stella for helpful discussions. This work has
ies of deviation from scaling due to finite-size effe@@mall  been supported by the European Network under Contract No.

L compared withg) [20]. ERBFMRXCT980183.
[1] H. J. Jensertelf-Organized CriticalityCambridge University 83, 3952(1999.
Press, Cambridge, England, 1998 [12] J. Cardy,Scaling and Renormalization in Statistical Physics
[2] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&%.381 (Cambridge University Press, Cambridge, England, 1996
(1987. [13] S. Clar, B. Drossel, and F. Schwabl, J. Phys.: Condens. Matter
[3] P. Bak, K. Chen, and C. Tang, Phys. Lett1A7 297 (1992. 8, 6803(1996.
[4] B. Drossel and F. Schwabl, Phys. Rev. Lé8, 1629(1992. [14] K. Christensen, H. Flyvbjerg, and Z. Olami, Phys. Rev. Lett.
[5] A. Johansen, Physica D8, 186 (1994). 71, 2737(1993.
[6] S. Clar, B. Drossel, and F. Schwabl, Phys. Rev6@ 1009 [15] A. Chessa, H.E. Stanley, A. Vespignani, and S. Zapperi, Phys.
(19949. Rev. E59, R12(1999.
[7] Finite Size ScalingVol. 2 of Current Physics-Sources and [16] A. Chessa, A. Vespignani, and S. Zapperi, Comput. Phys.
Commentsedited by J. L. CardyNorth Holland, Amsterdam, Commun.121-122 299 (1999.
1988. [17] R. Pastor-Satorras and A. Vespignani, J. Phys33\ L33
[8] P. Grassberger, J. Phys. 26, 2081 (1993. (2000.

[9] We have chosen a notation more conventional in sandpil¢18] S. Libeck, Phys. Rev. B1, 204 (2000.
models. The equivalence with the notation in Réfs6], and  [19] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-

[8], based on percolation theory, ig—7—1, A¢—\, 7.—b, terling, Numerical Recipes in C: The Art of Scientific Comput-

and\—v'. ing, 2nd ed.(Cambridge University Press, Cambridge, En-
[10] M. De Menech, A.L. Stella, and C. Tebaldi, Phys. Re\6& gland, 1992

R2677(1998. [20] K. Schenk, B. Drossel, S. Clar, and F. Schwabl, e-print

[11] C. Tebaldi, M. De Menech, and A.L. Stella, Phys. Rev. Lett. cond-mat/9904356.



